World Energy 2014-2050 (Part 1)

This is a guest post by Political Economist

World Energy 2014-2050: An Informal Annual Report

 “Political Economist” June 2014

The purpose of this informal report is to provide an analytical framework to track the development of world energy supply and demand as well as their impacts on the global economy. The report projects world supply of oil, natural gas, coal, nuclear, hydro, wind, solar, biofuels, and other renewable energies from 2014 to 2050.  It also projects the overall world energy consumption, gross world economic product, energy efficiency, and carbon dioxide emissions from 2014 to 2050.

The basic analytical tool is Hubbert Linearization, first proposed by American geologist M. King Hubbert.  Despite its limitations, Hubbert Linearization provides a useful tool helping to indicate the likely level of ultimately recoverable resources under the existing trends of technology, economics, and geopolitics.  Other statistical methods and some official projections will also be used where they are relevant.

Oil

According to BP Statistical Review of World Energy 2014, world oil consumption (including crude oil, natural gas liquids, coal-to-liquids, gas-to-liquids, and biofuels) reached 4,185 million metric tons (91.3 million barrels per day) in 2013, 1.4 percent higher than world oil consumption in 2012.  In 2013, oil consumption accounted for 32.9 percent of the world primary energy consumption.

World oil production (including crude oil and natural gas liquids) reached 4,133 million metric tons (86.8 million barrels per day) in 2013, 0.6 percent higher than world oil production in 2012.  Figure 1 shows oil production by the world’s five largest oil producers from 1965 to 2013.

 photo Oil062014-1_zpsc4e13cc7.jpgAs of 2013, world “proved” oil reserves stood at 238 billion metric tons, 1.0 percent higher than the “proved” oil reserves in 2012.

In recent years, the US oil production has surged due to the “shale oil” boom.  The US accounted for all of the growth of world oil production from 2008 to 2013.  Figure 2 shows the historical and projected US oil production from 1950 to 2050.  The projection is based on the reference case scenario for US oil production from 2011 to 2040 projected by the US Energy Information Administration (EIA), extended to 2050 based on the trend from 2031 to 2040.  The EIA reference case projects the US oil production to peak in 2019, with a production level of 543 million metric tons.

 photo Oil062014-2_zps187c496f.jpg

Figure 3 applies the Hubbert Linearization analysis to the world (excluding the US) oil production.  As of 2013, the world (excluding the US) cumulative production of oil was 145 billion metric tons.  The linear trend from 1995 to 2013 indicates the ultimately recoverable amount to be 309 billion metric tons.  Regression R-square is 0.964.

 photo Oil062014-3_zps1ef84a1c.jpg

Figure 4 shows the world (excluding the US) historical and projected oil production from 1950 to 2050.  The world (excluding the US) oil production is projected to peak in 2016, with a production level of 3,758 million metric tons.

 photo Oil062014-4_zps356b6e6a.jpg

Figure 5 shows the world historical and projected oil production.  The projected world oil production is the sum of the projected world (excluding the US) oil production and the projected US oil production.  World oil production is projected to peak in 2016, with a production level of 4,297 million metric tons.

 photo Oil062014-5_zpsbf13044a.jpg

Natural Gas

According to BP Statistical Review of World Energy 2014, world natural gas consumption reached 3,348 billion cubic meters (3,020 million metric tons of oil-equivalent) in 2013, 1.4 percent higher than world natural gas consumption in 2012.  In 2013, natural gas consumption accounted for 23.7 percent of the world primary energy consumption.

World natural gas production reached 3,391 billion cubic meters (3,060 million metric tons of oil-equivalent) in 2013, 1.1 percent higher than world natural gas production in 2012.  Figure 6 shows natural gas production by the world’s five largest natural gas producers from 1970 to 2013.

 photo NaturalGas062014-1_zpsc1cf0271.jpgAs of 2013, world “proved” natural reserves stood at 186 trillion cubic meters, 0.2 percent higher than the “proved” natural gas reserves in 2012.

In recent years, the US natural gas production has surged due to the “shale gas” boom.  The US is the world’s largest natural gas producer, accounting for 20.5 percent of the world total production.  Figure 7 shows the historical and projected US natural gas production from 1950 to 2050.  The projection is based on the reference case scenario for the US natural gas production from 2011 to 2040 projected by the US Energy Information Administration (EIA), extended to 2050 based on the trend from 2031 to 2040.  Based on the EIA projection, the US natural gas production will not peak before 2050.

 photo NaturalGas062014-2_zpsbbf85b41.jpg

Figure 8 applies the Hubbert Linearization analysis to the world (excluding the US) natural gas production.  As of 2013, the world (excluding the US) cumulative production of natural gas was 67 billion metric tons of oil-equivalent.  The linear trend from 1982 to 2013 indicates the ultimately recoverable amount to be 203 billion metric tons.  Regression R-square is 0.859.

 photo NaturalGas062014-3_zps82c080a7.jpg

Figure 9 shows the world (excluding the US) historical and projected natural gas production from 1960 to 2050.  The world (excluding the US) natural gas production is projected to peak in 2027, with a production level of 2,786 million metric tons of oil-equivalent.

 photo NaturalGas062014-4_zps999443c0.jpg

Figure 10 shows the world historical and projected natural gas production.  The projected world natural gas production is the sum of the projected world (excluding the US) natural gas production and the projected US natural gas production.  World natural gas production is projected to peak in 2029, with a production level of 3,667 million metric tons of oil-equivalent.

 photo NaturalGas062014-5_zps955ac99e.jpg

Coal

According to BP Statistical Review of World Energy 2014, world coal consumption reached 3,827 million metric tons of oil-equivalent in 2013, 3.0 percent higher than world coal consumption in 2012.  In 2013, coal consumption accounted for 30.1 percent of the world primary energy consumption.

World coal production reached 7,896 million metric tons (3,881 million metric tons of oil-equivalent) in 2013, 0.8 percent higher than world coal production in 2012.  Figure 11 shows coal production by the world’s five largest coal producers from 1981 to 2013.

 photo Coal062014-1_zps13c6efd8.jpg

As of 2013, world coal reserves stood at 892 billion metric tons, 3.6 percent higher than the coal reserves in 2012.  The total increase in coal reserves by about 31 billion metric tons can be accounted for by the upward adjustment of reserves by Indonesia (an increase by 22 billion metric tons), Turkey (an increase by 6 billion metric tons), and Brazil (an increase by 2 billion metric tons).

China is the world’s largest coal producer, accounting for 47.4 percent of the world total production.  For many years, the BP Statistical Review of World Energy has reported China’s coal reserves to be 114.5 billion metric tons without update.  According to China’s Ministry of Land and Natural Resources, China’s coal “reserve base” was 230 billion metric tons as of 2012.  China’s cumulative coal production from 1896 to 2013 was 66 billion metric tons.  I assume that China’s ultimately recoverable coal resources will be 300 billion metric tons.

Figure 12 shows China’s historical and projected coal production from 1900 to 2100. China’s coal production is projected to peak in 2031, with a production level of 5,383 million metric tons.

 photo Coal062014-2_zps1d65f594.jpg

Figure 13 applies the Hubbert Linearization analysis to the world (excluding China) coal production.  The historical trajectory of the world (excluding China) coal production was complicated by the collapse of the Soviet Union, which led to drastic declines of coal production in the 1990s.  A direct application of linear trend from 1950 to 2013 results in projected production levels significantly lower than the observed production levels for recent years.  A linear trend from 1950 to 1996 is used instead, yielding projected production levels similar to observed production levels for recent years.

 photo Coal062014-3_zps2298cfce.jpg

As of 2013, the world (excluding China) cumulative production of coal was 275 billion metric tons. The linear trend from 1950 to 1996 indicates the ultimately recoverable amount to be 736 billion metric tons.  Regression R-square is 0.626.

Figure 14 shows the world (excluding China) historical and projected coal production from 1900 to 2100.  The world (excluding China) coal production is projected to peak in 2035, with a production level of 4,551 million metric tons.

 photo Coal062014-4_zps0ed158fa.jpg

Figure 15 shows the world historical and projected coal production.  The projected world coal production is the sum of the projected world (excluding China) coal production and China’s projected coal production.  World coal production is projected to peak in 2031, with a production level of 9,922 million metric tons.

 photo Coal062014-5_zpsc5240e66.jpg

 

This entry was posted in Uncategorized and tagged , , . Bookmark the permalink.

122 Responses to World Energy 2014-2050 (Part 1)

  1. Adam Ash says:

    ‘.as much as 700,000 barrels of ultralight oil per day could be exported starting next year.
    Eventually, the exemption could grow to a substantial portion of the three million barrels a day of oil that energy companies are pumping from shale,’

    In a finite world all that means is the poor old US of A has to IMPORT three million barrels a day more to sustain it’s internal consumption. Dumb, but not surprising.

  2. Jeju-islander says:

    The chances of Iraq increasing its oil production in the near future seem to be increasingly remote.
    Iraq’s Oil Ministry announced last Wednesday that it has postponed indefinitely the bidding round for the 300,000 barrel per day (bpd) Nassiriya oil field and refinery project, which was set to take place on Thursday.
    If you look at the map you will that Nassiriya is in the supposedly safe Southern zone of Iraq.

    Also the Baiji refinery may finally have fallen, But perhaps not see http://www.iraqoilreport.com/security/energy-sector/baiji-refinery-nearly-falls-insurgents-12569/

  3. Euan Mearns says:

    ISIS, Iraq, Kurdistan and Oil

    The map taken from a May 2014 Genel presentation surprised me since borders seem in the process of being redrawn. The semi-autonomous region is the green area surrounding Erbil. The grey area is Kurdish territory that until recently was part of Iraq. The recent capture of Kirkuk by the Peshmerga gives a clear sign of Kurdish intentions. The area is of immense regional importance, not just for its oil reserves and production but for its pipelines that cross into Turkey at a very narrow point of mutual Iraq – Turkey border.

    and Kunstler writes:

    It all happened pretty quickly last week, but in case you haven’t noticed, Humpty Dumpty fell off the wall over there. The bonehead American news media affects to be too stunned to even ask the pertinent questions, starting with: is that all it took to undo eight years and — what? — maybe two trillion dollars in US-sponsored nation-building? Oh, plus 4,000 US dead and 50,000 wounded. So, my question would be: when do the political recriminations kick in? Pretty soon, I reckon, and when they do, expect them to be fiercely perverse. The theme of who lost Iraq? may cost more than who lost Vietnam?

  4. All mothers and fathers ought to also have their teenage girls vaccinated to prevent
    HPV. Dermatitis, or pores and skin illness, is 1 of the most typical issues that people have.
    To talk about intercourse is a taboo in the culture.

    Check out my web-site; does insurance cover std testing

Leave a Reply

Your email address will not be published.

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>