Eagle Ford Update

efchart/

Figure 1

 This was also posted at Peak Oil Climate and Sustainability

It has been a while since I have updated my estimate of actual output from the Eagle Ford.

Kevin Carter (KC at Peak Oil Barrel) graciously offered help pulling together data for the 39 fields which make up the Eagle Ford play (see this page at the RRC of TX, spreadsheet download here .)
Kevin has strong programming skills in Visual Basic for Applications (VBA) and has made the job of gathering the Eagle Ford data considerably easier.  Thank you Kevin!

My previous estimates only included the Eagleville fields (Eagle Ford 1 and Eagle Ford 2 and the inactive Eagle Ford and Eagle Ford Sour fields), Briscoe Ranch, Sugarkane, Dewitt, Gates Ranch, Hawkville, and Eagle Ridge fields.  Together these 10 fields produce about 99% of Eagle Ford C+C output so these previous estimates are not bad, this new estimate includes all Eagle Ford output reported by the RRC from June 1993 to January 2014.

Note that from June 1993 to Dec 2006 C+C monthly output from the Eagle Ford play was 12 b/d or less, which is why the chart starts at Jan 2007.

An Excel spreadsheet with the data can be downloaded here .  More below the fold.

Read More

North Dakota Bakken/Three Forks Scenarios

blog1402fig1/

Figure 1

Edit(2/10/2014) For anyone interested a spreadsheet with the TRR scenario can be downloaded here just click on down arrow near the upper left to download spreadsheet.

 A recent post at Peak Oil Barrel by Jean Laherrere suggested an ultimate recoverable resource(URR) for the North Dakota Bakken/Three Forks of about 2.5 Gb based on Hubbert Linearization.  This conflicts with a recent (April 2013) USGS mean (F50) TRR estimate of 8.4 Gb. (See my earlier blog post.) 

I decided to update my scenarios based on the range of USGS TRR estimates from F95=6 Gb to F5=11.3 Gb for the North Dakota(ND) Bakken/ Three Forks.  Note that at year end 2011 there were 2.6 Gb of crude proven reserves in ND and at the end of 2007 about 0.5 Gb, I will assume all of this reserve increase came from the Bakken/ Three Forks, so 2.1 Gb of proven reserves added to 0.35 Gb of oil produced from the Bakken/ Three Forks gives us 2.45 Gb for a minimum URR.  The Hubbert Linearization points to about 0.05 Gb of undiscovered oil whereas the USGS suggests 3.5 to 8.9 Gb of undiscovered technically recoverable resource(TRR) in the North Dakota Bakken/Three Forks.

Note that Mr. Laherrere has forgotten more about geology than I know. He may have information that I don’t have access to or has read the USGS April 2013 Bakken/Three Forks assessment and found that the report was not credible.  I have assumed in my analysis that the USGS analysis is correct, if it is not then my analysis will also be flawed.  I would love to hear from Mr. Laherrere about the specific problems he sees with the USGS analysis, I no doubt would learn much.

Read More

When Will US Light Tight Oil (LTO) Peak?

Ron Patterson has graciously allowed me to cross post this here.  It originally was posted at oilpeakclimate.blogspot.com 

ltofig3/

The rapid rise in oil output since 2008 has the mainstream media claiming that the US will soon be energy independent.  US Crude oil output has increased about 2.8 MMb/d (56%) since 2008 and about 2 MMb/d is from the shale plays in North Dakota ( Bakken/Three Forks) and Texas (Eagle Ford). My modeling suggests that a peak from these two plays may be reached by 2016, other shale plays (also known as light tight oil [LTO] plays) may be able to fill the gap left by declining Bakken and Eagle Ford output until 2020, beyond that point we will see a rapid decline.

There are two main views:

  1. There will be little crude plus condensate (C+C) output from any plays except the Bakken/Three Forks in North Dakota and Montana and the Eagle Ford of Texas.
  2. The other LTO plays will come to the rescue when the Bakken and Eagle Ford reach their peak and keep LTO near these peak levels to about 2020 with a slow decline in output out to 2040.

Where are these “other LTO plays”?  There are a couple of these in Oklahoma and Texas (in the Permian basin, Granite Wash, Mississippian basin), the Appalachian, the Niobrara in Colorado, and others (see slide 17 of the USGS presentation link below).  Is it possible for these LTO plays to offset future declines in the Bakken and Eagle Ford?  I hope to answer that in this post.

Read More